Please enable JavaScript to view this site.

IBM® SPSS® Amos™ 28

The example (which is the same as Model A in Example 6 of the User's Guide) yields the following modification indices.

Covariances: (Group number 1 - Default model)

 

 

 

M.I.

Par Change

eps2

<-->

delta1

5.905

-.424

eps2

<-->

eps4

26.545

.825

eps2

<-->

eps3

32.071

-.988

eps1

<-->

delta1

4.609

.421

eps1

<-->

eps4

35.367

-1.069

eps1

<-->

eps3

40.911

1.253

 

Variances: (Group number 1 - Default model)

 

 

 

M.I.

Par Change

 

Regression Weights: (Group number 1 - Default model)

 

 

 

M.I.

Par Change

powles71

<---

powles67

5.457

.057

powles71

<---

anomia67

9.006

-.065

anomia71

<---

powles67

6.775

-.069

anomia71

<---

anomia67

10.352

.076

powles67

<---

powles71

5.612

.054

powles67

<---

anomia71

7.278

-.054

anomia67

<---

powles71

7.706

-.070

anomia67

<---

anomia71

9.065

.068

 

The largest modification index is 40.911, indicating that the chi-square statistic will drop by at least 40.911 if the covariance between eps1 and eps3 is allowed to depart from zero (the value at which it is fixed in Model A). The number 1.254 in the Par Change column indicates that the covariance will increase by about 1.254 if it is free to take on any value. Of course if the covariance (now zero) increases by 1.254 it will then be equal to 1.254. Actually, in Model B of Example 6, where the covariance between eps1 and eps3 is unconstrained, its estimate is 1.888. Kaplan (1989) and Saris, Satorra and Sörbom (1987) discuss the use of estimated parameter changes in exploratory analyses.

© 2021 Amos Development Corporation